Department of Mechanical Engineering, BUET. *ME 6189: Computational Fluid Dynamics* **Assignment-4** (Due date: 24 March 2013, Saturday. Submit hard-copy, at class)

Note: (i) Symbols have their usual meanings.

(ii) Clearly sketch the C.V. (control volume), show the nodal points, and C.V. faces.

(iii) Consider uniform grid; show details of the discretization process.

(v) Submit your code with necessary results plotted.

(vi) Show the grid independency test, and compare the results with the analytical solutions.

1. Consider two infinite plates, a distance of 0.3 cm apart. The upper plate is stationary and the lower plate oscillates according to

$$u(0,t) = u_0 \cos(1000t) = u_0 \cos(1000n\Delta t)$$

where *n* represents the computational time level, selected to be 1 at t = 0.0. The governing equation is obtained from the Navier-Stokes equation as

$$\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial y^2}$$

Assume the kinematic viscosity ν is constant and has a value of 0.000217 m²/s, and u₀ = 40 m/s.

Use the following methods in time discretization,

(i) explicit, (ii) implicit, (iii) Crank-Nicolson

Plot the velocity profile for at least four time levels.

2. Two parallel plates extended to infinity are a distance of *h* apart. The fluid within the plates has a kinematic viscosity v of 0.000217 m²/s and density ρ of 800 kg/m³. The upper plate is stationary and the lower plate is suddenly set in motion with a constant velocity of 40 m/s. The spacing *h* is 4 cm. A constant streamwise pressure gradient of dp/dx is imposed within the domain at the instant motion starts.

The governing equation is reduced from the Navier-Stokes equation and is given by

$$\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial y^2} - \frac{1}{\rho} \frac{\partial p}{\partial x}$$

Compute the velocity within the domain for

(i) dp/dx = 0.0 (ii) $dp/dx = 20000 \text{ N/m}^2/\text{m}$ (iii) $dp/dx = -30000 \text{ N/m}^2/\text{m}$

Use any suitable method for time discretization. Plot the velocity profile for at least three time levels.