Equation of Motion $\frac{$ Continuity equation

$$
\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0
$$

N AT

The equations of motion for incompressible Newtonian fluid in Cartesian coordinates (x, y, z).

$$
\begin{aligned}\n\text{Momentum equation} \\
x-\text{component} : \\
\rho \left(\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} \right) &= \\
&= -\frac{\partial p}{\partial x} + \eta \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right) + \rho g_x \\
y-\text{component} : \\
\rho \left(\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} \right) &= \\
&= -\frac{\partial p}{\partial y} + \eta \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right) + \rho g_y \\
z-\text{component} : \\
\rho \left(\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} \right) &= \\
&= -\frac{\partial p}{\partial z} + \eta \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right) + \rho g_z\n\end{aligned}
$$

Equation of Motion

The equations of motion for incompressible Newtonian fluid in *cylindrical coordinates (r, θ, z)*

Continuity equation
\n
$$
\frac{1}{r} \frac{\partial}{\partial r} (r u_r) + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial u_z}{\partial z} = 0
$$
\nMomentum equation
\n
$$
r
$$
\n
$$
\rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_r}{\partial \theta} - \frac{u_{\theta}^2}{r} + u_z \frac{\partial u_z}{\partial z} \right) =
$$
\n
$$
= -\frac{\partial p}{\partial r} + \eta \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r u_r) \right) + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial^2 u_r}{\partial z^2} \right] + \rho g_r
$$
\n
$$
\theta
$$
-component:
\n
$$
\rho \left(\frac{\partial u_{\theta}}{\partial t} + u_r \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_r u_{\theta}}{r} + u_z \frac{\partial u_{\theta}}{\partial z} \right) =
$$
\n
$$
= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \eta \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r u_{\theta}) \right) + \frac{1}{r^2} \frac{\partial^2 u_{\theta}}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} + \frac{\partial^2 u_{\theta}}{\partial z^2} \right] + \rho g_{\theta}
$$
\nz-component:
\n
$$
\rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_z}{\partial \theta} + u_z \frac{\partial u_z}{\partial z} \right) =
$$
\n
$$
= -\frac{\partial p}{\partial z} + \eta \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} +
$$

Equation of Motion

The equations of motion for incompressible Newtonian fluid in spherical coordinates *(r, θ, φ)*

Continuity equation
\n
$$
\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 u_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (u_{\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi} = 0
$$
\nMomentum equation
\n r -component:
\n
$$
\rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_r}{\partial \theta} + \frac{u_{\phi}}{r \sin \theta} \frac{\partial u_r}{\partial \phi} - \frac{u_{\theta}^2 + u_{\phi}^2}{r} \right) =
$$
\n
$$
= -\frac{\partial p}{\partial r} + \eta \left[\nabla^2 u_r - \frac{2}{r^2} u_r - \frac{2}{r^2} \frac{\partial u_{\theta}}{\partial \theta} - \frac{2}{r^2} u_{\theta} \cot \theta - \frac{2}{r^2 \sin \theta} \frac{\partial u_{\phi}}{\partial \phi} \right] + \rho g_r
$$
\n θ -component:
\n
$$
\rho \left(\frac{\partial u_{\theta}}{\partial t} + u_r \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_{\phi}}{r \sin \theta} \frac{\partial u_{\theta}}{\partial \phi} + \frac{u_r u_{\theta}}{r} - \frac{u_{\phi}^2 \cot \theta}{r} \right) =
$$
\n
$$
= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \eta \left[\nabla^2 u_{\theta} + \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} - \frac{u_{\theta}}{r^2 \sin^2 \theta} - \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial u_{\phi}}{\partial \phi} \right] + \rho g_{\theta}
$$
\n
$$
\phi
$$
-component:
\n
$$
\rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\phi}}{\partial \theta} + \frac{u_{\phi}}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi} + \frac{u_{\phi} u_r}{
$$