Equation of Motion

The equations of motion for incompressible Newtonian fluid in Cartesian coordinates (x, y, z).

Continuity equation

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0$$

Momentum equation

x-component :

$$\rho \left(\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} \right) =$$

$$= -\frac{\partial p}{\partial x} + \eta \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right) + \rho g_x$$

y—component :

$$\begin{split} \rho \left(\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} \right) &= \\ &= -\frac{\partial p}{\partial y} + \eta \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right) + \rho g_y \end{split}$$

z—component :

$$\begin{split} \rho \left(\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} \right) = \\ = -\frac{\partial p}{\partial z} + \eta \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right) + \rho g_z \end{split}$$

Equation of Motion

The equations of motion for incompressible Newtonian fluid in cylindrical coordinates (r, θ, z)

Continuity equation

$$\frac{1}{r}\frac{\partial}{\partial r}(ru_r) + \frac{1}{r}\frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_z}{\partial z} = 0$$

Momentum equation

r—component :

$$\begin{split} \rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_r}{\partial \theta} - \frac{u_\theta^2}{r} + u_z \frac{\partial u_z}{\partial z} \right) = \\ &= -\frac{\partial p}{\partial r} + \eta \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r u_r) \right) + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta} + \frac{\partial^2 u_r}{\partial z^2} \right] + \rho g_r \end{split}$$

 θ -component :

$$\rho \left(\frac{\partial u_{\theta}}{\partial t} + u_{r} \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_{r} u_{\theta}}{r} + u_{z} \frac{\partial u_{\theta}}{\partial z} \right) =$$

$$= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \eta \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r u_{\theta}) \right) + \frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}} + \frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta} + \frac{\partial^{2} u_{\theta}}{\partial z^{2}} \right] + \rho g_{\theta}$$

z-component:

$$\begin{split} \rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_z}{\partial \theta} + u_z \frac{\partial u_z}{\partial z} \right) &= \\ &= -\frac{\partial p}{\partial z} + \eta \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} + \frac{\partial^2 u_z}{\partial z^2} \right] + \rho g_z \end{split}$$

Equation of Motion

The equations of motion for incompressible Newtonian fluid in spherical coordinates (r, θ, ϕ)

Continuity equation

$$\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 u_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (u_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial u_\phi}{\partial \phi} = 0$$

Momentum equation

r—component :

$$\begin{split} \rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_r}{\partial \theta} + \frac{u_\phi}{r \sin \theta} \frac{\partial u_r}{\partial \phi} - \frac{u_\theta^2 + u_\phi^2}{r} \right) = \\ &= -\frac{\partial p}{\partial r} + \eta \left[\nabla^2 u_r - \frac{2}{r^2} u_r - \frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta} - \frac{2}{r^2} u_\theta \cot \theta - \frac{2}{r^2} \frac{\partial u_\phi}{\partial \phi} \right] + \rho g_r \end{split}$$

 θ -component :

$$\rho \left(\frac{\partial u_{\theta}}{\partial t} + u_{r} \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_{\phi}}{r \sin \theta} \frac{\partial u_{\theta}}{\partial \phi} + \frac{u_{r} u_{\theta}}{r} - \frac{u_{\phi}^{2} \cot \theta}{r} \right) =$$

$$= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \eta \left[\nabla^{2} u_{\theta} + \frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta} - \frac{u_{\theta}}{r^{2} \sin^{2} \theta} - \frac{2 \cos \theta}{r^{2} \sin^{2} \theta} \frac{\partial u_{\phi}}{\partial \phi} \right] + \rho g_{\theta}$$

 ϕ —component :

$$\begin{split} \rho \left(\frac{\partial u_{\phi}}{\partial t} + u_r \frac{\partial u_{\phi}}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_{\phi}}{\partial \theta} + \frac{u_{\phi}}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi} + \frac{u_{\phi} u_r}{r} + \frac{u_{\theta} u_{\phi}}{r} \cot \theta \right) = \\ = -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} + \eta \left[\nabla^2 u_{\phi} - \frac{u_{\phi}}{r^2 \sin^2 \theta} + \frac{2}{r^2 \sin \theta} \frac{\partial u_r}{\partial \phi} + \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial u_{\theta}}{\partial \phi} \right] + \rho g_{\phi} \end{split}$$

where

$$\nabla^2 u_i = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u_i}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u_i}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u_i}{\partial \phi^2}$$