1. In Figure 1, a plane channel flow is shown which is composed of the flow of two superimposed nonmixable fluids, i.e. fluids *A* and *B* that flow simultaneously through a channel formed by two parallel plates. The fluid that is on the lower part of the channel has density ρ_A , viscosity μ_A and mass flow m_A . The fluid that is on the top of fluid A has the density ρ_B , viscosity μ_B and mass flow m_B . Solve the Navier-Stokes equation for this flow. Plot the velocity distribution and comment. Assume steady flow.

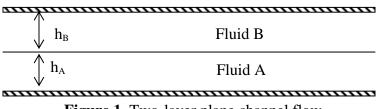
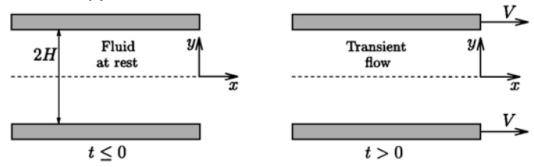
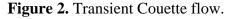


Figure 1. Two-layer plane channel flow.


2. A Newtonian liquid is contained between two horizontal, infinitely long and wide plates, separated by a distance 2*H*, as illustrated in Figure 2. The liquid is initially at rest; at time t=0+, both plates start moving with constant speed *V*.


(a) Write the governing equation, the boundary and the initial conditions for this transient flow.

- (b) What is the solution for $t \le 0$?
- (c) What is the solution for $t \to \infty$?

(d) Find the time-dependent solution $u_x(y, t)$ using separation of variables.

(e) Plot the velocity profiles at $t = 0, 0+, t_1 > 0$ and ∞ .

3. Solve the equations of motions for transient plane Poiseuille flow as shown in Figure 3. Plot the velocity distribution at different time and comment.

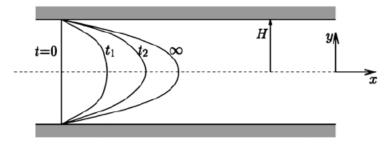


Figure 3. Transient plane Poiseuille flow.