
15Integral Controllers
• create a restoring force that is proportional to the sum of all past errors multiplied 

by time,
OutputI = KI KP Σ(E Δt)

Where, 
OutputI = controller output due to integral control
KI = integral gain constant (sometimes expressed as 1/TI)
Kp = proportional gain constant
Σ(EΔt) = sum of all past errors (multiplied by the time they existed)

• For a constant value of error, the value of Σ(EΔt) will increase with time, causing 
the restoring force to get larger and larger. 

• Eventually, the restoring force will get large enough to overcome friction and move 
the controlled variable in a direction to eliminate the error.

• The introduction of integral control in a control system can reduce the steady-
state error to zero.

16Integral Controllers: Steady-State-Error Problem

Figure 6.8 Graph showing integral control eliminating a 
steady-state error.

17Integral Controllers:
The proportional feedback system of 
(KP = 10 in. · oz/deg) has been 
modified to include integral feedback. 
The arm has been at rest (at the 30°
position) when a weight is placed on 
the end of the arm, causing a 
downward torque of 40 in. · oz 
[Figure 6.9(a)]. 

• Describe how the control system 
responds to the weight.

Figure 6.9 The system response of proportional plus 
integral control.

18Integral Controllers: Drawback

• Although the addition of integral feedback eliminates the steady-state-error 
problem, it reduces the overall stability of the system.

• The problem occurs because integral feedback tends to make the system 
overshoot, which may lead to oscillations.

• Also, the response of integral feedback is relatively slow because it takes a while 
for the ‘error.time’ area to build up.



19Integral Controllers: Drawback

• All mechanical systems have friction, and friction is nonlinear—that is, it takes 
more force to overcome friction when the object is at rest than it does to keep an 
object moving.

• At time = 0, the system in Figure 6.10 has just moved to a new position and 
stopped, leaving a steady-state error. The restoring force is equal to the 
contribution from proportional control plus the increasing force from the integral 
control. 

Figure 6.10 The system response of proportional plus 
integral control.

• For a while the object doesn’t move, 
but finally the combined restoring 
force overcomes friction and the 
object “breaks loose.”

• Once moving, the friction force 
immediately drops so some force is 
“left over,” which goes to accelerating 
the object. 

• This may cause it to overshoot, and 
the whole process starts again from 
the other side.

20Derivative Controllers
• One solution to the overshoot problem is to include derivative control.
• Derivative controller “applies the brakes,” slowing the controlled variable just 

before it reaches its destination.
• Mathematically, the contribution from derivative controller is expressed by the 

following equation:

where
OutputD = controller output due to derivative control
KD = derivative gain constant (sometimes expressed TD, unit is time)
KP = proportional gain constant

= error rate of change (slope of error curve)

21Derivative Controllers
• Assume the controlled variable is initially at 

0°. 
• At time A the set point moves rapidly to 

30°. 
• Because of mechanical inertia, it takes time 

for the object to get up to speed. 
• Notice that the position error (E) is 

increasing (positive slope) during this time 
period (A to B).

• Therefore, derivative control, which is 
proportional to error slope, will have a 
positive output, which gives the object a 
boost, to help get it moving. 

• As the controlled variable closes in on the 
set-point value (B to C), the position error 
is decreasing (negative slope), so derivative 
feedback applies a negative force that acts 
like a brake, helping to slow the object.

Figure 6.11 Contribution of derivative control, showing 
boosting and braking.

22Derivative Controllers
• derivative control improves system performance in two ways. 

– first, it provides an extra boost of force at the beginning of a change to promote 
faster action; 

– second, it provides for braking when the object is closing in on the new set point. 
This braking action not only helps reduce overshoot but also tends to reduce 
steady-state error.

• Derivative control has no influence on the accuracy of the system, just the 
response time, so it is never used by itself.



23PID Controllers
• Many control systems use a combination of the three types of feedback already 

discussed: Proportional + Integral + Derivative (PID) Control. 
• The foundation of the system is proportional control. 
• Adding integral control provides a means to eliminate steady-state error but may 

increase overshoot. 
• Derivative control is good for getting sluggish systems moving faster and reduces 

the tendency to overshoot. 
• The response of the PID system can be described by the following Equation, which 

simply adds together the three components required:

where
OutputPID = output of the PID controller
KP = proportional control gain
KI = integral control gain (often seen as 1/TI)
KD = derivative control gain (often seen as TD)
E = error (deviation from the set point)
Σ(EΔt) = sum of all past errors (area under the error · time curve)
ΔE/Δt = rate of change of error (slope of the error curve)

24PID Controllers: DC Motor speed control

DC Motor Speed Control Response with 
(a) Low kp Only, (b) Moderate kp, 
(c) High Kp, (d)  very High kp

(a)

(b)

(c)

(d)

25PID Controllers: DC Motor speed control

DC Motor Speed Control Response (a) with High kp Only, (b) with High kp and 
Low Derivative Gain kd, (c) with High kp and Moderate Derivative Gain kd, 
(d) with High kp, Moderate Derivative Gain kd, and Low Integral Gain ki. 

(a)

(b)

(c)

(d)

26PIP Controllers
• In a dynamic system, such as a robot arm, the desired position is a moving target, in 

which case we are concerned with path control. 
• Further, the desired path between two points may not be a straight line. 
• For example, a welding robot needs to follow the path of the seam. 
• The feedforward, or PIP approach is a way to implement path control.

PIP = Proportional + Integral + Preview 
• PIP controller that incorporates information of the future path in its current output. 
• Many systems have this information available — either the entire path is stored in 

memory or the system is equipped with a preview sensor as illustrated in Figure 6.12 for 
a welding robot. 

Figure 6.12 A welder using a
preview sensor for PIP control.



27PIP Controllers

Output = KP E + KI KP Σ(E Δt) + KF (PT+1 – PT)
KF = feedforward gain constant
PT = position it should be in now
PT + 1 = position it should be in, in the future (at T + 1)

Figure 6.13 Improved path control with feedforward.

• feedforward term, KF (PT + 1 – PT), is 
proportional to the difference between 
where the controlled object is and 
where it must be in the future. 

• If this number is large, the system has 
a long way to go and should speed 
up. 

• If the number is small or zero, the 
system will be stopping and so should 
begin slowing down. 

• In each case, the value of the 
feedforward term is added to the 
controller output so that the 
controlled object is pushed with more 
or less force, depending on where it 
has to be in the near future. 

• By anticipating the change in 
direction, the PIP system can begin 
slowing ahead of time and minimize 
overshoot.

28On-Off Controllers: Two-Point Control

• Two-point control (also called on–off control) is the simplest type of closed-loop 
control strategy. 

• The actuator can push the controlled variable with only full force or no force.
• When the actuator is off, the controlled variable settles back to some rest state. 
• A good example of two-point control is a thermostatically controlled heating system. 
• Consider a house sitting for a long time with the heat turned off and an outside 

temperature of 50°F. Eventually, the inside temperature would drop to 50°. This is its rest-
state temperature. 

• Now suppose the heat is turned on and the thermostat is set for an average temperature 
of 70°. 

• As Figure 6.14(a) shows, the inside temperature begins to climb, rapidly at first, and then 
more slowly (as the heat losses increase). When the temperature reaches the 72° cutoff 
point, the furnace shuts down.

• The house temperature immediately starts to decline toward its rest state of 50°; but long 
before it gets there, it reaches the cut-on point of 68°, and the furnace comes back on. 

• Notice that the temperature curve is like a charging and discharging capacitor.

29On-Off Controllers: Two-Point Control

• Note: there is a cycle time (Tcyc) associated with two-point control. 
• This cycle time is affected by the capacity of the furnace and the house, as well as the 

temperature difference between the cut-on and cut-off points.
• If the limits were moved closer together—say, 69° and 71°, the temperature would be 

maintained closer to 70°, but the cycle frequency would increase, as illustrated in Figure 
6.14(b). 

• Generally, a high cycle rate is undesirable because of wear on motors and switches. 
• two-point control has only limited applications, mostly on slow-moving systems where it is 

acceptable for the controlled variable to move back-and-forth between the two limit 
points.

Figure 11.4 Temperature curve of a two-point heating system.


