
1System Stability
• The most important concept in system response is stability.

• The term stability has many different definitions and uses, but the most common 
definition is related to equilibrium. 

• A system in equilibrium will remain in the same state in the absence of external 
disturbances.

• A stable system will return to an equilibrium state if a “small” disturbance moves 
the system away from the initial state. 

• An unstable system will not return to an equilibrium position, and frequently will 
move “far” from the initial state.

• Figure 5.1 illustrates three stability conditions with a simple ball and hill system. 

• In each case an equilibrium position is easily identified—either the top of the hill or 
the bottom of the valley.

FIGURE 5.1 System stability.

• In the unstable case, a small motion of 
the ball away from the equilibrium 
position will cause the ball to move “far”
away, as it rolls down the hill. 

2System Stability
• In the stable case, a small movement of the ball away from the equilibrium position 

will eventually result in the ball returning, perhaps after a few oscillations. 
• In the third case, the absence of friction causes the ball to oscillate continuously 

about the equilibrium position once a small movement has occurred. This special 
case is often known as marginal stability, since the system never quite returns to 
the equilibrium position.

• Most sensors and actuators are inherently stable. However, the addition of active 
control systems can cause a system of stable devices to exhibit overall unstable 
behavior. 

• Careful analysis and testing is required to ensure that a mechatronic system acts in 
a stable manner. 

• The complex response of stable dynamic systems is frequently approximated by 
much simpler systems. Understanding both first-order and second order system 
responses to either instantaneous (or step) changes in inputs or sinusoidal inputs 
will suffice for most situations.

3System Stability: criteria
• A system is stable if every bounded input yields a bounded output.

– this is called the bounded-input, bounded-output (BIBO) definition of stability.

• Physically, an unstable system whose natural response grows without bound can 
cause damage to the system, to adjacent property, or to human life. 
– Many times systems are designed with limited stops to prevent total runaway. 

• Recall from our study of system poles that poles in the left half-plane (lhp) yield 
either pure exponential decay or damped sinusoidal natural responses. 
– These natural responses decay to zero as time approaches infinity. 
– Thus, if the closed-loop system poles are in the left half of the plane and hence 

have a negative real part, the system is stable. 
– That is, stable systems have closed-loop transfer functions with poles only in 

the left half-plane.
• Poles in the right half-plane (rhp) yield either pure exponentially increasing or 

exponentially increasing sinusoidal natural responses. 
– These natural responses approach infinity as time approaches infinity. 
– Thus, if the closed-loop system poles are in the right half of the s-plane and 

hence have a positive real part, the system is unstable.

(a)

(b)

y(t)

y(t)

4System Stability
– Thus, unstable systems have 

closed loop transfer functions with 
at least one pole in the right half-
plane and/or poles of multiplicity 
greater than 1 on the imaginary 
axis.

• Finally, a system that has imaginary 
axis poles of multiplicity 1 yields pure 
sinusoidal oscillations as a natural 
response. 

– These responses neither increase 
nor decrease in amplitude. 

– Thus, marginally stable systems 
have closed-loop transfer functions 
with only imaginary axis poles of 
multiplicity! and poles in the left 
half-plane.

Figure Closed-loop poles and response of 
(a) stable system, (b) unstable system.



5System Stability: Routh-Hurwitz Criterion
• a method that yields stability information without the need to solve for the closed-

loop system poles. 
• Using this method, we can tell how many closed-loop system poles are in the left 

half-plane, in the right half-plane, and on the j. 
– (Notice that we say how many, not where.) 

• We can find the number of poles in each section of the s-plane, but we cannot find 
their coordinates.

• The method requires two steps: 
– (1) Generate a data table called a Routh table
– (2) interpret the Routh table to tell how many closed-loop system poles are in the left 

half-plane, the right half-plane, and on the j-axis.

TABLE 1 Initial layout for Routh table

TABLE 2 Completed Routh table

6Generating a Basic Routh Table

• Routh-Hurwitz criterion states that the number of roots of the polynomial that are in 
the right half-plane is equal to the number of sign changes in the first column.

• If the closed-loop transfer function has all poles in the left half of the s-plane, the           
system is stable. 

• Thus, a system is stable if there are no sign changes in the first column of the Routh
table.

7Routh Table: Example 1

• Make the Routh table for the following system 

• There are two sign changes in the first column. 
– The first sign change occurs from 1 in the s2 row to -72 in the s1 row.
– The second occurs from -72 in the s1 row to 103 in the s° row. 
– Thus, the system is unstable since two poles exist in the right half-plane.

TABLE 3 Completed Routh table

8Routh Table: Example 2: Stability via Epsilon Method: Case 1

• Two special cases can occur: (1) The Routh table sometimes will have a zero only in 
the first column of a row, or (2) the Routh table sometimes will have an entire row 
that consists of zeros. Let us examine the first case.

• Make the Routh table for the following system

• If  is chosen positive, Table 5 will show a sign change from the s3 row to the s2 row, and there will be 
another sign change from the s2 row to the s1 row. Hence, the system is unstable and has two poles in 
the right half-plane.

• Alternatively, if we choose  negative. Table 5 will then show a sign change from the s4 row to the s3

row. Another sign change would occur from the s3 row to the s2 row. Our result would be exactly the 
same as that for a positive choice for e. Thus, the system is unstable, with two poles in the right half-
plane.

TABLE 4 Completed Routh table
TABLE 5 Determining signs in first column of a Routh
table with zero as first element in a row



9Routh Table: Example 3: Entire Row is Zero: Case 2

• Determine the number of right-half-plane poles in the closed-loop transfer 
function 

TABLE 6 Routh table

Steps
• 1. Start by forming the Routh table for the 

denominator
• At the second row we multiply through by 1/7 for 

convenience.
• We stop at the third row, since the entire row 

consists of zeros, and use the following procedure. 
• First we return to the row immediately above the 

row of zeros and form an auxiliary polynomial, 
using the entries in that row as coefficients. 

• The polynomial will start with the power of s in the 
label column and continue by skipping every other 
power of s. Thus, the polynomial formed for this 
example is Eq. (1).

• Next we differentiate the polynomial with respect 
to s and obtain

• we use the coefficients of Eq. (2) to replace the 
row of zeros

(1)

(2)

10Routh Table: Example 3: Entire Row is Zero: Case 2 (contd…)

TABLE 6 Routh table

Steps
• Again, for convenience, the third row is 

multiplied by 1/4 after replacing the zeros.
• The remainder of the table is formed in a 

straightforward manner by following the 
standard form shown in Table 2. 

• Table 6 shows that all entries in the first 
column are positive. 

• Hence, there are no right-half-plane poles 
and the system is Stable.

(1)

(2)


