
1

Linear System of Equations
• Linear systems are perhaps the most widely applied numerical procedures

when real-world situation are to be simulated.
• Example: computing the forces in a TRUSS. 051  FF

065850710710 7632  FF.FF.
10007525070710 642  F.FF.
18004 F
065850 11107  FF.F

80075250 108  F.F
065850 965  FF.F
500075250 86  FF.
070710 1411  F.F
60070710 1412  F.F
065850 13109  FF.F
075250 1210  FF.
070710 1413  F.F
200070710 14 F.

• Methods for numerically solving ordinary and partial differential equations
depend on Linear Systems of Equations.

• No of unknowns = number of equations i.e. nn system

• 14 equations with 14 unknowns

2

a11x1  a12x2  a13x3  b1

a21x1  a22x2  a23x3  b2

a31x1  a32x2  a33x3  b3


















































3

2

1

3

2

1

333231

232221

131211

b
b
b

x
x
x

aaa
aaa
aaa

Linear System of Equations

A x = b

n * n
Matrix

Column
vector

Column
vector

3

Matrix Notation

• A matrix consists of a rectangular array of elements represented by a single
symbol (example: [A]).

• An individual entry of a matrix is an element (example: a23)

4

Matrix Notation

• A horizontal set of elements is called a row and a vertical set of
elements is called a column.

• The first subscript of an element indicates the row while the second
indicates the column.

• The size of a matrix is given as m rows by n columns, or simply m
by n (or m x n).

• 1 x n matrices are row vectors.

• m x 1 matrices are column vectors.

5

Special Matrices
• Matrices where m=n are called square matrices.

• There are a number of special forms of square matrices:

Symmetric

A  
5 1 2
1 3 7
2 7 8

















Diagonal

A  
a11

a22

a33

















Identity

A  
1

1
1

















Upper Triangular

A  
a11 a12 a13

a22 a23

a33

















Lower Triangular

A  
a11

a21 a22

a31 a32 a33

















Banded

A  

a11 a12

a21 a22 a23

a32 a33 a34

a43 a44



















6

Matrix Operations

• Two matrices are considered equal if and only if every element in the first
matrix is equal to every corresponding element in the second. This means the
two matrices must be the same size.

A=B if aij= bij for all i and j

• Matrix addition and subtraction are performed by adding or subtracting the
corresponding elements. This requires that the two matrices be the same size.

C=A+B  cij=aij+ bij

• multiplication by a scalar is performed by multiplying each element by the
same scalar.

D=gA 

333231

232221

131211

gagaga
gagaga
gagaga

7

Matrix Multiplication
• The elements in the matrix [C] that results from multiplying matrices [A] and [B]

are calculated using:

cij  aikbkj
k1

n



8

Matrix Inverse and Transpose

• The inverse of a square, nonsingular matrix [A] is that matrix which, when
multiplied by [A], yields the identity matrix.

[A][A]-1=[A]-1[A]=[I]

• The transpose of a matrix involves transforming its rows into columns and
its columns into rows.

(aij)T=aji

9

Gauss Elimination method

• Forward elimination
– Starting with the first row, add or

subtract multiples of that row to
eliminate the first coefficient from
the second row and beyond.

– Continue this process with the
second row to remove the second
coefficient from the third row and
beyond.

– Stop when an upper triangular
matrix remains.

• Back substitution
– Starting with the last row, solve for

the unknown, then substitute that
value into the next highest row.

– Because of the upper-triangular
nature of the matrix, each row will
contain only one more unknown.

10

Gauss Elimination method
clc; close all; format long e;
% A= coefficient matrix % b=right hand side vector
% x=solution vector
A=[10 -7 0; -3 2 6; 5 -1 5]; b=[7;4;6];
[m,n]=size(A);
if m~=n

error('Matrix A must be square');
end
Nb=n+1;
Aug=[A b]; % Augmented matrix, combines A and b
%----forward elimination-------
for k=1:n-1 % from row 1 to n-1

if abs(A(k,k))<eps
error('Zero Pivot encountered')

end
for j=k+1:n

multiplier=Aug(j,k)/Aug(k,k);
Aug(j,k:Nb)=Aug(j,k:Nb)-multiplier*Aug(k,k:Nb);

end
end

11

Gauss Elimination method

%----Back substitution---------
x=zeros(n,1);
x(n)=Aug(n,Nb)/Aug(n,n);

for k=n-1:-1:1
for j=k+1:n

Aug(k,Nb)=Aug(k,Nb)-Aug(k,j)*x(j);
% computes b(k)-sum(akj*xj)

end

x(k)=Aug(k,Nb)/Aug(k,k);
end

12

Gauss Elimination method

• The execution of Gauss elimination depends on the amount of floating-point
operations (or flops). The flop count for an n x n system is:

Forward
Elimination

2n3

3
O n2 

Back
Substitution n2 O n 

Total 2n3

3
O n2 

13

Gauss Elimination method

Number of flops for Gauss Elimination method:

87.58%

98.53%

99.85%

667

666667

6.67*108

100

104

106

705

671550

6.67*108

805

681550

6.68*108

10

100

1000

% due to
Elimination

2n3/3Back
substitution

Forward
Elimination

Total flopsn

• As the system gets larger, the cost of computing increases
- Flops increases nearly 3 orders of magnitude for every order of

increase in the number of equations
• Most of the efforts is incurred in the forward elimination steps.

14

Cost of computing

Example 1:
Estimate the time required to carry out back substitution on a system of
500 equations in 500 unknowns, on a computer where elimination takes
1 second.

For Elimination
approx. flops, fe= 2n3/3=2*5003/3
time needed, te=1 sec

For Back substitution
approx. flops, fb=n2=5002

time needed, tb=?

tb/te=fb/fe
tb=te*fb/fe=3/(2*500)=0.003 sec

Back substitution time=0.003 sec
Total computation time=1.003 sec

15

Cost of computing
Example 2:
Assume that your computer can solve a 200*200 linear system Ax=b in
1 second by Gauss elimination method. Estimate the time required to
solve four systems of 500 equations in 500 unknowns with the same
coefficient matrix, using LU factorization method.

For Gauss Elimination
approx. flops, fg= 2n3/3=2*2003/3
time needed, tg=1 sec

For LU
approx. flops, fl=2n3/3+2kn2=2*5003/3+2*4*5002

time needed,
tl=tg*fl/fg=(2*500^3/3+2*4*5002)/(2*2003/3)=16 sec

If we do the same 4 problems by Gauss Elimination:
tg=4*5003/2003=62.5 sec

Time save=46.5 sec  300% !!!

16

Forward and backward error

Definition
Let xc be an approximate solution of the linear system Ax=b.

The residual is the vector r=b-Axc

The backward error = ||b-Axc||

The forward error = ||xexact-xc||















b
Axb

x
xx

c

exact

cexact

Error magnification factor=
errorbackwardrelative

errorforwardrelative

17

Sources of error
There are two major sources of error in Gauss-elimination as we have
discussed so far.

• ill-conditioning
• swamping

Ill-conditioning
-sensitivity of the solution to the input data.

1.First we examine the effect of small change in the coefficients

Let us consider a 22 system: Ax=b

























00.2
00.2

x
x

01.199.0
99.001.1

2

1









1
1

x exact










8.0
2.1

x 1C

Exact solution

Now, we make a small change in the coefficient matrix A

 New solution

Large
change
in soln











01.199.0
98.001.1

A1

18

Sources of error:Ill-conditioning
2. we examine the effect of small change in ‘b’ for the same coefficient
matrix A










0
2

x 1C solution









98.1
02.2

b1










02.2
98.1

b2  solution









2
0

x 2C

Ax=b
solver

b1

b

b2

xc1

xexact

xC2

Here we see, even though the 3 inputs are “close together”
we get very distinct outputs

Therefore, for ill-conditioned system,
small change in input, we get large change in output.

How can we express this characteristic mathematically?

19

Sources of error:Ill-conditioning
Let us consider another example of ill-conditioned system:

























0001.2
2

x
x

10001.1
11

2

1










1
1

x exact






 


0001.3

1
xC

||r||=||b-Axc||= 0.0001











0001.0
0001.0

Axbr CBackward error vector =











0001.2
2

xx CexactForward error vector =
||xexact-xc||= 2.0001




||b||

||Axb|| CRelative backward error = %005.0
0001.2
0001.0



Relative forward error =



||x||

||xx||

exact

Cexact = 2.0001  200%

Error magnification factor = 2.0001/(0.0001/2.0001) = 40004.001

For ill-conditioned
system, error
magnification

factor is very high

20

Condition number

There is another quantity known as “Condition number” is also used to
show that the system is ill-conditioned.

Definition
The condition number of a square matrix A, cond(A), is the maximum
possible error magnification factor for Ax=b, over all right-hand side b.

Theorem
The condition number of a n*n matrix A is cond(A)=||A||*||A-1||

• For ill-conditioned system, condition number is high

If the coefficient matrix A have t-digit precision, and cond(A)=10k

The solution vector x is accurate upto (t-k) digits.

Example: elements of a coefficient matrix A is accurate up to 5 digits,
and cond(A)=104

So, the solution is accurate (5-4) = 1 digit only !!!

21

Sources of error:Swamping

• A second significant source of error in Gauss elimination method is
Swamping.

• Much easier to fix.

• The Gauss elimination method discussed so far, works well as long
as the diagonal elements of coefficient matrix A (pivot) are non-zero.

• Note:
–The computation of the multiplier and the back substitution require
divisions by the pivots.
–Consequently the algorithm can not be carried out if any of the pivots are
zero or near to zero.

• Let us consider our original example again,























































6
4
7

x
x
x

515
623
0710

3

2

1























































6
901.3
7

x
x
x

515
6099.23
0710

3

2

1

















1
1

0
xexact

22

Sources of error:Swamping

• let us assume that the solution is to be computed on a hypothetical
machine that does decimal floating point arithmetic with
five significant digits.

• the first step of elimination produces,






















































5.2
001.6
7

x
x
x

55.20
6001.00
0710

3

2

1





 

10
3RRR 122








10
5RRR 133

quite small compared
with the other elements

23

Sources of error:Swamping

• without interchanging the rows, the multiplier 3105.2
001.0
5.2



 3
233 105.2RRR  
























































001.6105.25.2
001.6
7

x
x
x

6105.2500
6001.00
0710

3
3

2

1

3




















99993.0

5.1
35.0

x 2CFinally,

















1
1

0
xexactBut,

24

Sources of error:Swamping

• So, where did things go wrong?

• There is no “accumulation of rounding error” caused by doing
thousands of arithmetic operations
• The matrix is NOT close to singular
• Actually,

•The difficulty comes from choosing a small pivot at second step
of the elimination.
•As a result the multiplier is 2.5103 and the final equation
involves coefficients that are 103 times larger those in the original
problem.
•That means the equation is overpowered/swamped.

• If the multipliers are all less than or equal to 1 in magnitude, then
computed solution can be proved to be satisfactory.
• Keeping the multipliers less than one in absolute value can be
ensured by a process known as Pivoting.

25

Sources of error: Pivoting






















































001.6
5.2

7

x
x
x

6001.00
55.20
0710

3

2

1

• If we allow pivoting (partial), i.e, by interchanging R2 and R3, we have,




















0003.1
0006.1
00042.0

x 1C





 

5.2
001.0RRR 133

• Solution is close to the exact!!!

Ref: http://www.mathworks.com/moler/chapters.html

26

Pivoting

• Problems arise with Gauss elimination if a coefficient along the
diagonal (Pivot element) is 0 (problem: division by 0) or close to 0
(problem: round-off error)

• One way to combat these issues is to determine the coefficient with
the largest absolute value in the column below the pivot element.
The rows can then be switched so that the largest element is the
pivot element. This is called partial pivoting.

• If the rows to the right of the pivot element are also checked and
columns switched, this is called complete pivoting.

27

Gauss Elimination with partial pivoting
clc; close all; format long e;
% A= coefficient matrix % b=right hand side vector
% x=solution vector
A=[10 -7 0; -3 2 6; 5 -1 5]; b=[7;4;6];
[m,n]=size(A);
if m~=n, error('Matrix A must be square');end
Nb=n+1;
Aug=[A b]; % Augmented matrix, combines A and b
%----forward elimilation-------
for k=1:n-1 % from row 1 to n-1

%-----------partial pivoting------------
[big, big_pos]=max(abs(Aug(k:n,k)));
pivot_pos=big_pos+k-1;
if pivot_pos~=k

Aug([k pivot_pos],:)=Aug([pivot_pos k],:);
end
%--------------------------------------
for j=k+1:n

multiplier=Aug(j,k)/Aug(k,k);
Aug(j,k:Nb)=Aug(j,k:Nb)-multiplier*Aug(k,k:Nb);

end
end

28

Gauss Elimination method with partial pivoting

%----Back substitution---------
x=zeros(n,1);
x(n)=Aug(n,Nb)/Aug(n,n);

for k=n-1:-1:1
for j=k+1:n

Aug(k,Nb)=Aug(k,Nb)-Aug(k,j)*x(j);
% computes b(k)-sum(akj*xj)

end

x(k)=Aug(k,Nb)/Aug(k,k);
end

29

Scaling

Scaling is the operation of adjusting the coefficients of a set of
equations so that they are all of the same order of magnitude.

Example





















































2
102
105

x
x
x

121
10031
10023

3

2

1

If we do pivoting without scaling than round-off error may occur.
For the above system, computed solution is


















1
1
1

x exact


















00.1
09.1
94.0

x 1C

But if you scale the system (divide the maximum coefficient in each Row)
& then do the pivoting,





















































1
02.1
05.1

x
x
x

5.015.0
103.001.0
102.003.0

3

2

1


















00.1
00.1
00.1

x 2C
100
R

R 1
1 

100
RR 2

2 

2
RR 3

3 

 

30

Scaling

• So, whenever the coefficients in one column are widely different from

those in another column, scaling is beneficial.

• When all values are about the same order of magnitude, scaling should

be avoided, as additional round-off error incurred during the scaling

operation itself may adversely affect the accuracy.

31

Matrix inversion
• For square matrix
• If matrix A is square, there is another matrix A-1, called the inverse of A,
for which AA-1=I=A-1A

• Inverse can be computed in a column-by-column fashion by generating
solutions with the unit vectors as the right-hand-side constants.

• Example: for a 33 system

• Solution of the system Ax1=b1 will provide the column 1 of A-1

• Then use,

• Solution of the system Ax2=b2 will provide the column 2 of A-1

• Solution of the system Ax3=b3 will provide the column 3 of A-1


















0
0
1

b1


















0
1
0

b2

















1
0
0

b3

32

Matrix inversion
• finally, x1 x2 x3

A-1 = ? ? ?
? ? ?
? ? ?

• our original system is Ax = b  x=A-1 * b

No of flops:

multiplication: addition:

Total flops   2n3

-no of flops 3 times Gauss elimination,  more round-off error
-computationally more expensive
-Note: singular matrix (det A=0) has no inverse
-MATLAB: xc=inv(A)*b

n
6
5n2n

6
5 23  n

6
5n

2
1n

3
4 23 

3n
3

16

33

Iterative methods
• Uses an initial guess and refine the guess at each step,
converging to the solution vector.

34

Gauss Seidel and Jacobi method: Graphical depiction

35

Solving With MATLAB

• MATLAB provides two direct ways to solve systems of linear algebraic
equations [A]{x}={b}:

– Left-division
x = A\b

– Matrix inversion
x = inv(A)*b

• Note: The matrix inverse is less efficient than left-division and also only
works for square, non-singular systems.

36

Sparse matrix computations

































































31000000000
13100000000

01310000000
00131000000
00013100000
000013100000
000001310000
00000131000
00000013100
00000001310
00000000131

00000000013

AS

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

• No row of A has more than 4 non-zero entries.
• Since fewer than 4n of the n2 potential entries are non zero.

We may call this matrix Sprase.

37

Sparse matrix computations
We want to solve a system of equations defined by AS for n=105

What are the options?

Treating the coefficient matrix A as a full matrix means

 storing n2=1010 elements each as a double precision floating point number.

One double precision floating point number requires 8 bytes (64 bit) of storage.

So, n2=1010 elements will require 8*1010 bytes
= 80 gigabytes (approx.) of RAM

Not only the size is enemy, but so is time.

The number of flops by Gauss Elimination will be order of n3  1015

If a PC runs on the order of a few GHz (109 cycle per second), an upper
bound of floating point operations per second is around 108.
Therefore, time required of Gauss Elimination=1015/108=107 seconds.
Note: 1 year =3*107 seconds.

38

Sparse matrix computations
• So, it is clear that Gauss Elimination method for this problem is not an

overnight computation.

On the other hand,

• One step of an iterative method will require 2*4n=8*105 (approx.) operations.

• If the solution needs 100 iterations in Jacobi method, total operations=108

• Time required in modern PC for Jacobi method will be
=1 second (approx.) or less !!!

