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ME 261: Numerical Analysis

• 3.00 credit hours Prereq.: ME 163/ME 171

• Course content
– Approximations and error types
– Roots of polynomials and transcendental equations 
– Determinants and matrices 
– Solution of linear and non-linear algebraic equations 
– Eigenvalues and eigenvectors
– Interpolation methods 
– Curve fitting
– Numerical differentiation and integration 
– Solution of first-order differential equations
– Solving equations by finite differences 
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ME 261: Numerical Analysis

• Course teachers
1. Dr. S. Reaz Ahmed (Sunday)

Professor
2. Dr. M Zakir Hossain (Saturday, Tuesday)

Assistant Professor
Dept. of Mechanical Engineering
BUET, Dhaka-1000, Bangladesh.

Room: M602 (EME Building)
email: zakir(at)me.buet.ac.bd, zakir92(at)yahoo.com
web: teacher.buet.ac.bd/zakir
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ME 261: Numerical Analysis

• Text book
-Numerical Methods for Engineers

by Steven C. Chapra and Raymond P. Canale
Publishing company: Tata McGraw-Hill

• Reference book
1. Applied Numerical Analysis 

by Curtis F. Gerald and Patrik O. Wheatley 
Publishing company: Pearson  

2. Numerical Analysis 
by Timothy Sauer
Publishing company: Pearson

• ACADEMIC OFFENCES
Students must write their assignments in their own words. 
If students take an idea, or a passage of text from book, journal, web etc, they must 
acknowledge this by proper referencing such as footnotes or citations. 
Plagiarism is a major academic offence. 
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Why Numerical Analysis ?
• Example: computing the forces in a TRUSS

051  FF

065850710710 7632  FF.FF.

10007525070710 642  F.FF.

18004 F

065850 11107  FF.F

80075250 108  F.F
065850 965  FF.F

500075250 86  FF.

070710 1411  F.F

60070710 1412  F.F

065850 13109  FF.F

075250 1210  FF.

070710 1413  F.F

200070710 14 F.
• 14 equations with 14 unknowns
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Floating Point Arithmetic

• fractional quantities are typically represented in computers using floating 
point format

• this approach is very much similar to scientific notation

• for example, fixed point number 17.542 is the same as the floating point 
number .17542*102 which is often displayed as .17542e2

• another example, -.004428 is same as -.4428*10-2

General form of floating-point number in Computers:
.d1d2d3 ….dp*Be.

where, dj’s are digits or bits with values from 0 to B-1
B=the number base that is used, e.g. 2, 10,16,8
P=number of significand bits (digits), that is, the precision. 
e=an integer exponent, ranging from Emin to Emax

• d1d2d3…dp constitute the fractional part of the number
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Floating Point Arithmetic
Normalization:
• the fractional digits are shifted and the exponents are adjusted so that d1 is    

NONZERO
e.g. 
-.004428  -0.4428*10-2  is the normalized form

• In base-2(binary) system normalization means the first bit is always 1

IEEE Standard for the floating-point numbers:
• consists of a set of binary representations of real numbers 

• normalization gives the advantage that the first bit does not need to be stored

• Hence, nonzero binary floating point numbers can be expressed as, 

 (1+ f )*2e

where f =the mantissa (or the fraction) 
e= exponent
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• e.g. the decimal number 9, which is 1001 in binary, would be stored as,

+1.001 * 23

although the original number has 4 significant digits, we only have to 
store the 3 fractional bits: .001 

• There are three commonly used levels of precision for floating  
point numbers: 

 single precision (32 bits)

 double precision (64 bits)

 long double (80 bits)

The bits are divided as follows:

64151long double

52111double

2381single

mantissaexponentsignprecision

Floating Point Arithmetic
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• By default, MATLAB has adopted IEEE double precision format

Figure: The manner in which a floating point number is stored in IEEE double 
precision format

Note: because of normalization, 53 bits can be stored in mantissa. 

• Sign bit is 0 for positive numbers and 1 for negative numbers

Floating Point ArithmeticFloating Point Arithmetic
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    3
22 2*0110001.10110.10014.9 

Normalized

+1. 0010110011001100110011001100110011001100110011001100 110…

f  (52 bit) 53rd bit

How do we fit the infinite binary number representing 9.4 in a finite number of bits?

It will be stored in exponent

The decimal number 

Floating Point Arithmetic
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We must truncate the number in some way, and in doing so we necessarily 
make a small error

We can use two methods to truncate

Chopping:

• Simply through away the bits that fall off the end

-that is, those beyond the 52nd bit

• This method is simple, but it is biased in that it always moves the result 
toward zero
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Rounding:

• In base 10, numbers are customarily rounded up if the next digit is 5 or higher,
and rounded down otherwise

• In binary, this corresponds to rounding up if the bit is 1

• Specifically, the important bit in the double precision format is the 53rd bit

IEEE Rounding to Nearest Rule:

if bit 53 is 0,then truncate after the 52nd bit (round down)
if bit 53 is 1, add 1 to 52nd bit (round up)
exception: if the bits 53rd and beyond are like 10000000…, 

then add 1 to 52nd bit if and only if 52nd bit is 1.   

12

+1. 0010110011001100110011001100110011001100110011001100 110…

53rd bit

For the number (9.4) discussed previously, the 53rd bit in mantissa is 1

So, the Rounding to the Nearest Rule says to round up, i.e. to add 1 to bit 52 

Therefore the mantissa of floating point number that represents 9.4 is

+1. 0010110011001100110011001100110011001100110011001101
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Now let’s see how much error occurs due to this rounding of the mantissa

We have discarded the bits after 53rd, so error associated with discarding (Ed) is

352 2*2 492

352 2*2*110. 

351 2*2*0110. = 482*4. 

4849 2*4.024.9     492*8.014.9 
492*2.04.9 

We have added 1 in the 52nd bit, so error associated with roundup (Er) is

Therefore, fl(9.4)=9.4+Er-Ed

In other words, a computer using double precision representation and 
the Rounding to the nearest Rule makes as error of 0.2*2- 49

Roundoff error
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+1. 0000000000000000000000000000000000000000000000000000

The double precision number 1 is 

Machine Epsilon mach

+1. 0000000000000000000000000000000000000000000000000001

The next floating point number greater than 1 is

52 bits of mantissa

 1+2-52

So, the number machine Epsilon, denoted by mach , is the distance between  1 
and the smallest floating point number greater than 1.
For the IEEE double precision floating point standard,

mach = 2-52 =2.2204*10-16

It is a quantitative measure of the machine’s ability to perform computations 
accurately, depending upon the precision in use.
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Machine Epsilon mach

• Double precision numbers can be computed reliably

up to machine epsilon. 

• MATLAB has a library function eps to display mach
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Absolute and relative error

Let Xcomp be a computed version of the exact quantity Xexact

Absolute error = exactcomp XX 
exact

exactcomp

X

XX 
Relative error =

• absolute error does not account the order of magnitude of the value under 
examination. 

• Relative error can be expressed in %

• For example, we want to measure the length of bridge and a rivet. 

• We measured the length of bridge is 9999 cm and the length of the rivet is 9 cm. 

• The exact values are 10000 and 10 cm, respectively.  

• The absolute error for both cases is 1 cm.

• The percentage relative errors are 0.01% and 10%.

• That means, measurement of the length of the bridge is quite accurate, but the 
measurement of the rivet has significant error.  
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Arithmetic accuracy in Computers

• Aside from the limitations of a computer’s number system, the actual arithmetic 
manipulation involving this numbers can also result in roundoff error.

• To understand how this occurs, let’s look at how the computer performs simple 
addition and subtraction.

• Because of their familiarity, normalized base-10 numbers will be employed to 
illustrate the effect of roundoff errors on simple arithmetic manipulations.

• Other number bases would behave in a similar fashion.  

• To simplify the discussion, we assume a hypothetical computer with a 3-digit 
mantissa, and a 1-digit exponent, i.e. B=10, p=3, -9e9.

• Roundoff errors arise because digital computers cannot represent some  
quantities exactly.
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Arithmetic accuracy in Computers

• When two floating-point numbers are added /or subtracted, 
• the numbers are first expressed so that they have the same exponents. 

examples,
Addition:

• if we want to add 1.371 + 0.02693
• the computer would express the numbers as 

0.1371     * 101

+ 0.002693 * 101

0.139793  * 101

• Because this hypothetical computer only carries 3-digit mantissa
if rounded,                       0.140 *101

if chopped, 0.139 *101

Align the decimal points
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Arithmetic accuracy in Computers

Subtraction:
• compute 76.4 – 76.3 on a 3-decimal-digit computer. 
• The computer would express the numbers as 

0.764     * 102

- 0.763     * 102

0.001     * 102

3 significant digits

Two non-significant zeros are appended

Subtractive cancelation/loss of significant:
• subtraction of two nearly equal numbers.
• a major source of error in floating-point operations.

• After normalization,   0.100     * 100
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Subtractive cancellation/loss of significant

• subtraction of two nearly equal numbers
• a major source of error in floating-point operations

Example-1

Example-2

Lesson
• It is important to find ways to avoid subtracting nearly equal numbers in 

calculations
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• Roundoff error can happen in several circumstances other than just storing 
numbers - for example:
– Large computations - if a process performs a large number of 

computations, roundoff errors may build up to become significant
• Example

– Adding a Large and a Small Number - Since the small number’s mantissa 
is shifted to the right to be the same scale as the large number, digits are 
lost

– Smearing - Smearing occurs whenever the individual terms in a summation 
are larger than the summation itself.

• (x+10-20)-x = 10-20 mathematically, but

x=1; (x+1e-20)-x gives a 0 in MATLAB!

Arithmetic accuracy in Computers
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• Suppose we want to add a small number 0.001 to a large number 4000 using 
a hypothetical computer with the 4-digit mantissa and the 1-digit exponent

4000 0.400 * 104

0.001 0.000 000 1 * 104

0.400 000 1 *104

• The final result will be 0.4000 *104 (since we have 4-digit mantissa)
• It seems that we have not performed any addition !!!

• This type of error may occur in the computation of an infinite series

Example

• One way to mitigate this type of error is to sum the series in reverse order
• In this way each new term will be of comparable magnitude to the

accumulated sum

Adding a Large and a Small Number
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Truncation Error
Truncation errors are those that result from using an approximation in place 
of an exact mathematical procedure.

Example: The Taylor Series


f xi1  f xi  f ' xi h  f '' xi 

2!
h2 

f (3) xi 
3!

h3 
f (n ) xi 

n!
hn  Rn
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• The first order Taylor series can be used to calculate approximations to 
derivatives:

Rn =O( hn+1), meaning:

• The more terms are used, the smaller the error, and
• The smaller the spacing, the smaller the error for a given number of 
terms.

Example 2: Numerical differentiation

f ' (xi) 
f (xi1) f (xi)

h
 O(h)

If h is decreased (↓)  truncation error decreases(↓)

Truncation Error
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• Functions of a single variable

‒ Derivation using Taylor series for a single variable

‒ Example

• Functions of more than one variable

‒ Derivation using multivariable version of Taylor series 

‒ Example

Error Propagation
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Total Numerical Error
• The total numerical error is the summation of the truncation and roundoff errors.

• The truncation error generally increases as the step size increases, 

• To minimize the roundoff error, increase the number of precision (bits in 
mantissa) in computers

• Round off error increases due to subtractive cancellation 
– Or due to an increase in the number of computations in an analysis.

• A decrease in stepsize can lead to subtractive cancellation, or to an 
increase in computations,  the round off errors are increased. 
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Other Errors

• Blunders - errors caused by malfunctions of the computer or human 
imperfection.

• Model errors - errors resulting from incomplete mathematical models.

• Data uncertainty - errors resulting from the inaccuracy and/or imprecision of 

the measurement of the data.


