
1

1

ME 261: Numerical Analysis

• 3.00 credit hours Prereq.: ME 163/ME 171

• Course content
– Approximations and error types
– Roots of polynomials and transcendental equations
– Determinants and matrices
– Solution of linear and non-linear algebraic equations
– Eigenvalues and eigenvectors
– Interpolation methods
– Curve fitting
– Numerical differentiation and integration
– Solution of first-order differential equations
– Solving equations by finite differences

2

ME 261: Numerical Analysis

• Course teachers
1. Dr. S. Reaz Ahmed (Sunday)

Professor
2. Dr. M Zakir Hossain (Saturday, Tuesday)

Assistant Professor
Dept. of Mechanical Engineering
BUET, Dhaka-1000, Bangladesh.

Room: M602 (EME Building)
email: zakir(at)me.buet.ac.bd, zakir92(at)yahoo.com
web: teacher.buet.ac.bd/zakir

2

3

ME 261: Numerical Analysis

• Text book
-Numerical Methods for Engineers

by Steven C. Chapra and Raymond P. Canale
Publishing company: Tata McGraw-Hill

• Reference book
1. Applied Numerical Analysis

by Curtis F. Gerald and Patrik O. Wheatley
Publishing company: Pearson

2. Numerical Analysis
by Timothy Sauer
Publishing company: Pearson

• ACADEMIC OFFENCES
Students must write their assignments in their own words.
If students take an idea, or a passage of text from book, journal, web etc, they must
acknowledge this by proper referencing such as footnotes or citations.
Plagiarism is a major academic offence.

4

Why Numerical Analysis ?
• Example: computing the forces in a TRUSS

051  FF

065850710710 7632  FF.FF.

10007525070710 642  F.FF.

18004 F

065850 11107  FF.F

80075250 108  F.F
065850 965  FF.F

500075250 86  FF.

070710 1411  F.F

60070710 1412  F.F

065850 13109  FF.F

075250 1210  FF.

070710 1413  F.F

200070710 14 F.
• 14 equations with 14 unknowns

3

5

Floating Point Arithmetic

• fractional quantities are typically represented in computers using floating
point format

• this approach is very much similar to scientific notation

• for example, fixed point number 17.542 is the same as the floating point
number .17542*102 which is often displayed as .17542e2

• another example, -.004428 is same as -.4428*10-2

General form of floating-point number in Computers:
.d1d2d3 ….dp*Be.

where, dj’s are digits or bits with values from 0 to B-1
B=the number base that is used, e.g. 2, 10,16,8
P=number of significand bits (digits), that is, the precision.
e=an integer exponent, ranging from Emin to Emax

• d1d2d3…dp constitute the fractional part of the number

6

Floating Point Arithmetic
Normalization:
• the fractional digits are shifted and the exponents are adjusted so that d1 is

NONZERO
e.g.
-.004428  -0.4428*10-2 is the normalized form

• In base-2(binary) system normalization means the first bit is always 1

IEEE Standard for the floating-point numbers:
• consists of a set of binary representations of real numbers

• normalization gives the advantage that the first bit does not need to be stored

• Hence, nonzero binary floating point numbers can be expressed as,

 (1+ f)*2e

where f =the mantissa (or the fraction)
e= exponent

4

7

• e.g. the decimal number 9, which is 1001 in binary, would be stored as,

+1.001 * 23

although the original number has 4 significant digits, we only have to
store the 3 fractional bits: .001

• There are three commonly used levels of precision for floating
point numbers:

 single precision (32 bits)

 double precision (64 bits)

 long double (80 bits)

The bits are divided as follows:

64151long double

52111double

2381single

mantissaexponentsignprecision

Floating Point Arithmetic

8

• By default, MATLAB has adopted IEEE double precision format

Figure: The manner in which a floating point number is stored in IEEE double
precision format

Note: because of normalization, 53 bits can be stored in mantissa.

• Sign bit is 0 for positive numbers and 1 for negative numbers

Floating Point ArithmeticFloating Point Arithmetic

5

9

    3
22 2*0110001.10110.10014.9 

Normalized

+1. 0010110011001100110011001100110011001100110011001100 110…

f (52 bit) 53rd bit

How do we fit the infinite binary number representing 9.4 in a finite number of bits?

It will be stored in exponent

The decimal number

Floating Point Arithmetic

10

We must truncate the number in some way, and in doing so we necessarily
make a small error

We can use two methods to truncate

Chopping:

• Simply through away the bits that fall off the end

-that is, those beyond the 52nd bit

• This method is simple, but it is biased in that it always moves the result
toward zero

6

11

Rounding:

• In base 10, numbers are customarily rounded up if the next digit is 5 or higher,
and rounded down otherwise

• In binary, this corresponds to rounding up if the bit is 1

• Specifically, the important bit in the double precision format is the 53rd bit

IEEE Rounding to Nearest Rule:

if bit 53 is 0,then truncate after the 52nd bit (round down)
if bit 53 is 1, add 1 to 52nd bit (round up)
exception: if the bits 53rd and beyond are like 10000000…,

then add 1 to 52nd bit if and only if 52nd bit is 1.

12

+1. 0010110011001100110011001100110011001100110011001100 110…

53rd bit

For the number (9.4) discussed previously, the 53rd bit in mantissa is 1

So, the Rounding to the Nearest Rule says to round up, i.e. to add 1 to bit 52

Therefore the mantissa of floating point number that represents 9.4 is

+1. 0010110011001100110011001100110011001100110011001101

7

13

Now let’s see how much error occurs due to this rounding of the mantissa

We have discarded the bits after 53rd, so error associated with discarding (Ed) is

352 2*2 492

352 2*2*110. 

351 2*2*0110. = 482*4. 

4849 2*4.024.9     492*8.014.9 
492*2.04.9 

We have added 1 in the 52nd bit, so error associated with roundup (Er) is

Therefore, fl(9.4)=9.4+Er-Ed

In other words, a computer using double precision representation and
the Rounding to the nearest Rule makes as error of 0.2*2- 49

Roundoff error

14

+1. 00

The double precision number 1 is

Machine Epsilon mach

+1. 0001

The next floating point number greater than 1 is

52 bits of mantissa

 1+2-52

So, the number machine Epsilon, denoted by mach , is the distance between 1
and the smallest floating point number greater than 1.
For the IEEE double precision floating point standard,

mach = 2-52 =2.2204*10-16

It is a quantitative measure of the machine’s ability to perform computations
accurately, depending upon the precision in use.

8

15

Machine Epsilon mach

• Double precision numbers can be computed reliably

up to machine epsilon.

• MATLAB has a library function eps to display mach

16

Absolute and relative error

Let Xcomp be a computed version of the exact quantity Xexact

Absolute error = exactcomp XX 
exact

exactcomp

X

XX 
Relative error =

• absolute error does not account the order of magnitude of the value under
examination.

• Relative error can be expressed in %

• For example, we want to measure the length of bridge and a rivet.

• We measured the length of bridge is 9999 cm and the length of the rivet is 9 cm.

• The exact values are 10000 and 10 cm, respectively.

• The absolute error for both cases is 1 cm.

• The percentage relative errors are 0.01% and 10%.

• That means, measurement of the length of the bridge is quite accurate, but the
measurement of the rivet has significant error.

9

17

Arithmetic accuracy in Computers

• Aside from the limitations of a computer’s number system, the actual arithmetic
manipulation involving this numbers can also result in roundoff error.

• To understand how this occurs, let’s look at how the computer performs simple
addition and subtraction.

• Because of their familiarity, normalized base-10 numbers will be employed to
illustrate the effect of roundoff errors on simple arithmetic manipulations.

• Other number bases would behave in a similar fashion.

• To simplify the discussion, we assume a hypothetical computer with a 3-digit
mantissa, and a 1-digit exponent, i.e. B=10, p=3, -9e9.

• Roundoff errors arise because digital computers cannot represent some
quantities exactly.

18

Arithmetic accuracy in Computers

• When two floating-point numbers are added /or subtracted,
• the numbers are first expressed so that they have the same exponents.

examples,
Addition:

• if we want to add 1.371 + 0.02693
• the computer would express the numbers as

0.1371 * 101

+ 0.002693 * 101

0.139793 * 101

• Because this hypothetical computer only carries 3-digit mantissa
if rounded, 0.140 *101

if chopped, 0.139 *101

Align the decimal points

10

19

Arithmetic accuracy in Computers

Subtraction:
• compute 76.4 – 76.3 on a 3-decimal-digit computer.
• The computer would express the numbers as

0.764 * 102

- 0.763 * 102

0.001 * 102

3 significant digits

Two non-significant zeros are appended

Subtractive cancelation/loss of significant:
• subtraction of two nearly equal numbers.
• a major source of error in floating-point operations.

• After normalization, 0.100 * 100

20

Subtractive cancellation/loss of significant

• subtraction of two nearly equal numbers
• a major source of error in floating-point operations

Example-1

Example-2

Lesson
• It is important to find ways to avoid subtracting nearly equal numbers in

calculations

11

21

• Roundoff error can happen in several circumstances other than just storing
numbers - for example:
– Large computations - if a process performs a large number of

computations, roundoff errors may build up to become significant
• Example

– Adding a Large and a Small Number - Since the small number’s mantissa
is shifted to the right to be the same scale as the large number, digits are
lost

– Smearing - Smearing occurs whenever the individual terms in a summation
are larger than the summation itself.

• (x+10-20)-x = 10-20 mathematically, but

x=1; (x+1e-20)-x gives a 0 in MATLAB!

Arithmetic accuracy in Computers

22

• Suppose we want to add a small number 0.001 to a large number 4000 using
a hypothetical computer with the 4-digit mantissa and the 1-digit exponent

4000 0.400 * 104

0.001 0.000 000 1 * 104

0.400 000 1 *104

• The final result will be 0.4000 *104 (since we have 4-digit mantissa)
• It seems that we have not performed any addition !!!

• This type of error may occur in the computation of an infinite series

Example

• One way to mitigate this type of error is to sum the series in reverse order
• In this way each new term will be of comparable magnitude to the

accumulated sum

Adding a Large and a Small Number

12

23

Truncation Error
Truncation errors are those that result from using an approximation in place
of an exact mathematical procedure.

Example: The Taylor Series


f xi1  f xi  f ' xi h  f '' xi 

2!
h2 

f (3) xi 
3!

h3 
f (n) xi 

n!
hn  Rn

24

• The first order Taylor series can be used to calculate approximations to
derivatives:

Rn =O(hn+1), meaning:

• The more terms are used, the smaller the error, and
• The smaller the spacing, the smaller the error for a given number of
terms.

Example 2: Numerical differentiation

f ' (xi) 
f (xi1) f (xi)

h
 O(h)

If h is decreased (↓) truncation error decreases(↓)

Truncation Error

13

25

• Functions of a single variable

‒ Derivation using Taylor series for a single variable

‒ Example

• Functions of more than one variable

‒ Derivation using multivariable version of Taylor series

‒ Example

Error Propagation

26

Total Numerical Error
• The total numerical error is the summation of the truncation and roundoff errors.

• The truncation error generally increases as the step size increases,

• To minimize the roundoff error, increase the number of precision (bits in
mantissa) in computers

• Round off error increases due to subtractive cancellation
– Or due to an increase in the number of computations in an analysis.

• A decrease in stepsize can lead to subtractive cancellation, or to an
increase in computations,  the round off errors are increased.

14

27

Other Errors

• Blunders - errors caused by malfunctions of the computer or human
imperfection.

• Model errors - errors resulting from incomplete mathematical models.

• Data uncertainty - errors resulting from the inaccuracy and/or imprecision of

the measurement of the data.

